Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 947, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351211

RESUMO

Declining Arctic sea ice is increasing polar bear land use. Polar bears on land are thought to minimize activity to conserve energy. Here, we measure the daily energy expenditure (DEE), diet, behavior, movement, and body composition changes of 20 different polar bears on land over 19-23 days from August to September (2019-2022) in Manitoba, Canada. Polar bears on land exhibited a 5.2-fold range in DEE and 19-fold range in activity, from hibernation-like DEEs to levels approaching active bears on the sea ice, including three individuals that made energetically demanding swims totaling 54-175 km. Bears consumed berries, vegetation, birds, bones, antlers, seal, and beluga. Beyond compensating for elevated DEE, there was little benefit from terrestrial foraging toward prolonging the predicted time to starvation, as 19 of 20 bears lost mass (0.4-1.7 kg•day-1). Although polar bears on land exhibit remarkable behavioral plasticity, our findings reinforce the risk of starvation, particularly in subadults, with forecasted increases in the onshore period.


Assuntos
Inanição , Ursidae , Humanos , Animais , Mudança Climática , Canadá , Dieta , Camada de Gelo , Regiões Árticas , Ecossistema
2.
Sci Rep ; 12(1): 15415, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138067

RESUMO

The internal mechanisms responsible for modulating physiological condition, particularly those performed by the gut microbiome (GMB), remain under-explored in wildlife. However, as latitudinal and seasonal shifts in resource availability occur, the myriad micro-ecosystem services facilitated by the GMB may be especially important to wildlife health and resilience. Here, we use brown bears (Ursus arctos) as an ecological model to quantify the relationship between wildlife body condition metrics that are commonly used to assess individual and population-level health and GMB community composition and structure. To achieve these aims, we subsampled brown bear fecal samples collected during United States National Park Service research activities at three National Parks and Preserves (Katmai, Lake Clark, and Gates of the Arctic) and extracted microbial DNA for 16S rRNA amplicon sequencing and microbial taxonomic classification. We analyzed GMB communities using alpha diversity indices, subsequently using Spearman's correlation analysis to examine relationships between alpha diversity and brown bear health metrics. We found no differences in GMB composition among bears with differing body conditions, nor any correlations between alpha diversity and body condition. Our results indicate that GMB composition reflects diverse foraging strategies while allowing brown bears to achieve similar body condition outcomes.


Assuntos
Microbioma Gastrointestinal , Ursidae , Animais , Ecossistema , Indicadores de Qualidade em Assistência à Saúde , RNA Ribossômico 16S/genética , Ursidae/fisiologia
3.
PLoS One ; 17(4): e0266698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35395042

RESUMO

Gut microbiomes (GMBs), complex communities of microorganisms inhabiting the gastrointestinal tracts of their hosts, perform countless micro-ecosystem services such as facilitating energy uptake and modulating immune responses. While scientists increasingly recognize the role GMBs play in host health, the role of GMBs in wildlife ecology and conservation has yet to be realized fully. Here, we use brown bears (Ursus arctos) as an ecological model to (1) characterize GMB community composition associated with location, season, and reproductive condition of a large omnivore; (2) investigate how both extrinsic and intrinsic factors influence GMB community membership and structure; and (3) quantify differences in GMB communities among different locations, seasons, sex, and reproductive conditions. To achieve these aims, we subsampled brown bear fecal samples collected during United States National Park Service research activities at three National Parks and Preserves (Katmai, Lake Clark, and Gates of the Arctic) and extracted microbial DNA for 16S rRNA amplicon sequencing and microbial taxonomic classification. We analyzed GMB communities using alpha and beta diversity indices, subsequently using linear mixed models to examine relationships between alpha diversity and extrinsic and intrinsic factors. Katmai brown bears hosted the greatest alpha diversity, whereas Gates brown bears hosted the least alpha diversity. Our results indicate that location and diet drive GMB variation, with bears hosting less phylogenetic diversity as park distance inland increases. Monitoring brown bear GMBs could enable managers to quickly detect and assess the impact of environmental perturbations on brown bear health. By integrating macro and micro-ecological perspectives we aim to inform local and landscape-level management decisions to promote long-term brown bear conservation and management.


Assuntos
Microbioma Gastrointestinal , Ursidae , Animais , Ecossistema , Filogenia , RNA Ribossômico 16S/genética , Ursidae/fisiologia
4.
Zoo Biol ; 41(2): 166-175, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34793606

RESUMO

Although polar bears (Ursus maritimus) and brown bears (U. arctos) have been exhibited in zoological gardens for centuries, little is known about their nutritional needs. Multiple recent studies on both wild and captive polar bears and brown bears have found that they voluntarily select dietary macronutrient proportions resulting in much lower dietary protein and higher fat or digestible carbohydrate concentrations than are currently fed in most zoos. These lower protein concentrations selected by both species maximized growth rates and efficiencies of energy utilization in brown bears and may play a role in reducing kidney, liver, and cardiovascular diseases in both species. Therefore, we propose the need for the development of new dietary regimens for both species in managed care that better reflect their macronutrient needs. We developed a new kibble that is higher in fat and lower in protein than typical diets that have been fed in managed care, has a fatty acid profile more consistent with wild bear diets, and has been readily consumed by both brown bears and polar bears. The kibble can be fed as the sole diet or as part of more complex diets with additional fruits, meats, or vegetables. Because many nutritional deficiencies and related diseases can take months or years to appear, we urge caution and continued long-term monitoring of bears and their diets to ensure their optimal health.


Assuntos
Ursidae , Animais , Animais Selvagens , Animais de Zoológico , Dieta/veterinária
5.
J Comp Physiol B ; 192(2): 379-395, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34687352

RESUMO

Accurate information on diet composition is central to understanding and conserving carnivore populations. Quantitative fatty acid signature analysis (QFASA) has emerged as a powerful tool for estimating the diets of predators, but ambiguities remain about the timeframe of QFASA estimates and the need to account for species-specific patterns of metabolism. We conducted a series of feeding experiments with four juvenile male brown bears (Ursus arctos) to (1) track the timing of changes in adipose tissue composition and QFASA diet estimates in response to a change in diet and (2) quantify the relationship between consumer and diet FA composition (i.e., determine "calibration coefficients"). Bears were fed three compositionally distinct diets for 90-120 days each. Two marine-based diets were intended to approximate the lipid content and composition of the wild diet of polar bears (U. maritimus). Bear adipose tissue composition changed quickly in the direction of the diet and showed evidence of stabilization after 60 days. During hibernation, FA profiles were initially stable but diet estimates after 10 weeks were sensitive to calibration coefficients. Calibration coefficients derived from the marine-based diets were broadly similar to each other and to published values from marine-fed mink (Mustela vison), which have been used as a model for free-ranging polar bears. For growing bears on a high-fat diet, the temporal window for QFASA estimates was 30-90 days. Although our results reinforce the importance of accurate calibration, the similarities across taxa and diets suggest it may be feasible to develop a generalized QFASA approach for mammalian carnivores.


Assuntos
Hibernação , Ursidae , Animais , Calibragem , Dieta/veterinária , Jejum , Ácidos Graxos/metabolismo , Masculino , Ursidae/fisiologia
6.
Vet Med Sci ; 7(5): 2032-2038, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978314

RESUMO

Hair cortisol concentration (HCC) is being used increasingly to evaluate long-term stress in many mammalian species. Most of the cortisol is assumed to passively diffuse from circulating blood into hair follicles and gradually accumulate in growing hair. However, our research with free-ranging grizzly bears (Ursus arctos) suggests HCC increases significantly within several hours following capture, a time too brief to be explained by this mechanism alone. In this study with captive grizzly bears, we sought to determine if a brief spike in blood cortisol concentration, thus mimicking a single stressful event, would cause an increase in HCC over a 7-day period. To do this, we administered a single intravenous dose (5 µg/kg) of cosyntropin to three captive unanaesthetised adult female grizzly bears on two occasions, during April when hair growth was arrested and during August when hair was growing. In both trials, the cosyntropin caused a two-fold or greater increase in serum cortisol levels within 1 hr but did not appear to influence HCC at 1, 48, and 168 hr following cosyntropin administration. We conclude the cosyntropin-induced cortisol spike was likely insignificant when compared to the adrenocortical response that occurs in free-ranging bears when captured. We suggest further study with a larger sample of captive bears to evaluate the combined effects of anaesthesia and multiple doses of cosyntropin administered over several hours would better simulate the adrenocortical response of free-ranging grizzly bears during capture.


Assuntos
Ursidae , Animais , Cosintropina , Feminino , Cabelo , Hidrocortisona , Ursidae/fisiologia
7.
Sci Rep ; 8(1): 11008, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030526

RESUMO

There is growing interest in the ecological significance of phenological diversity, particularly in how spatially variable resource phenologies (i.e. resource waves) prolong foraging opportunities for mobile consumers. While there is accumulating evidence of consumers moving across landscapes to surf resource waves, there is little data quantifying how phenological tracking influences resource consumption due to the challenge of documenting all the components of this ecological phenomenon (i.e., phenological variation, consumer movement, resource consumption, and consumer fitness). We examined the space use of GPS collared female brown bears to quantify the exploitation of a salmon resource wave by individual bears. We then estimated salmon consumption levels in the same individuals using stable isotope and mercury analyses of hair. We found strong positive relationships between time spent on salmon streams and percent salmon in assimilated diets (R2 = 0.70) and salmon mass consumed (R2 = 0.49). Salmon abundance varied 2.5-fold between study years, yet accounting for salmon abundance did not improve salmon consumption models. Resource abundance generally is viewed as the key variable controlling consumption levels and food web dynamics. However, our results suggest that in intact watersheds of coastal Alaska with abundant salmon runs, interannual variation in salmon abundance likely has less effect on salmon consumption than individual variation in bear foraging behavior. The results complement previous work to demonstrate the importance of phenological variation on bear foraging behavior and fitness.


Assuntos
Ingestão de Alimentos , Cadeia Alimentar , Salmão , Ursidae/fisiologia , Alaska , Animais , Comportamento Animal , Dieta/tendências , Feminino , Rios
8.
Proc Natl Acad Sci U S A ; 114(39): 10432-10437, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28827339

RESUMO

Climate change is altering the seasonal timing of life cycle events in organisms across the planet, but the magnitude of change often varies among taxa [Thackeray SJ, et al. (2016) Nature 535:241-245]. This can cause the temporal relationships among species to change, altering the strength of interaction. A large body of work has explored what happens when coevolved species shift out of sync, but virtually no studies have documented the effects of climate-induced synchronization, which could remove temporal barriers between species and create novel interactions. We explored how a predator, the Kodiak brown bear (Ursus arctos middendorffi), responded to asymmetric phenological shifts between its primary trophic resources, sockeye salmon (Oncorhynchus nerka) and red elderberry (Sambucus racemosa). In years with anomalously high spring air temperatures, elderberry fruited several weeks earlier and became available during the period when salmon spawned in tributary streams. Bears departed salmon spawning streams, where they typically kill 25-75% of the salmon [Quinn TP, Cunningham CJ, Wirsing AJ (2016) Oecologia 183:415-429], to forage on berries on adjacent hillsides. This prey switching behavior attenuated an iconic predator-prey interaction and likely altered the many ecological functions that result from bears foraging on salmon [Helfield JM, Naiman RJ (2006) Ecosystems 9:167-180]. We document how climate-induced shifts in resource phenology can alter food webs through a mechanism other than trophic mismatch. The current emphasis on singular consumer-resource interactions fails to capture how climate-altered phenologies reschedule resource availability and alter how energy flows through ecosystems.


Assuntos
Mudança Climática , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Comportamento Predatório/fisiologia , Animais , Salmão , Sambucus , Ursidae
9.
J Wildl Dis ; 50(1): 74-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24171564

RESUMO

Safe and effective immobilization of grizzly bears (Ursus arctos) is essential for research and management. Fast induction of anesthesia, maintenance of healthy vital rates, and predictable recoveries are priorities. From September 2010 to May 2012, we investigated these attributes in captive and wild grizzly bears anesthetized with a combination of a reversible α2 agonist (dexmedetomidine [dexM], the dextrorotatory enantiomer of medetomidine) and a nonreversible N-methyl-d-aspartate (NMDA) agonist and tranquilizer (tiletamine and zolazepam [TZ], respectively). A smaller-than-expected dose of the combination (1.23 mg tiletamine, 1.23 mg zolazepam, and 6.04 µg dexmedetomidine per kg bear) produced reliable, fast ataxia (3.7 ± 0.5 min, x̄±SE) and workable anesthesia (8.1 ± 0.6 min) in captive adult grizzly bears. For wild bears darted from a helicopter, a dose of 2.06 mg tiletamine, 2.06 mg zolazepam, and 10.1 µg dexmedetomidine/kg produced ataxia in 2.5 ± 0.3 min and anesthesia in 5.5 ± 1.0 min. Contrary to published accounts of bear anesthesia with medetomidine, tiletamine, and zolazepam, this combination did not cause hypoxemia or hypoventilation, although mild bradycardia (<50 beats per min) occurred in most bears during the active season. With captive bears, effective dose rates during hibernation were approximately half those during the active season. The time to first signs of recovery after the initial injection of dexMTZ was influenced by heart rate (P<0.001) and drug dose (P<0.001). Intravenous (IV) injection of the reversal agent, atipamezole, significantly decreased recovery time (i.e., standing on all four feet and reacting to the surrounding environment) relative to intramuscular injection. Recovery times (25 ± 8 min) following IV injections of the recommended dose of atipamezole (10 µg/µg of dexmedetomidine) and half that dose (5 µg/µg) did not differ. However, we recommend use of the full dose based on the appearance of a more complete recovery. Field trials confirmed that the dexMTZ + atipamezole protocol is safe, reliable, and predictable when administered to wild grizzly bears, especially during helicopter capture operations.


Assuntos
Anestesia Geral/veterinária , Hipnóticos e Sedativos/administração & dosagem , Imobilização/veterinária , Ursidae/fisiologia , Anestesia Geral/métodos , Animais , Animais Selvagens , Animais de Zoológico , Dexmedetomidina/administração & dosagem , Combinação de Medicamentos , Imobilização/métodos , Tiletamina/administração & dosagem , Zolazepam/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...